Quiz 3

Question 1

The function f(x) = |x - 2| + |2.5 – x| + |3.6 - x|, where x is a real number, attains a minimum at___.

x = 2.3

x = 2.5

x = 2.7

None of these

Solution:

f(x) = |x − 2| + |2.5 − x| + |3.6 − x| = g(x) + |2.5 – x|, where g(x) = |x − 2| + |3.6 − x|

When 2 ≤ x ≤ 3.6, g(x) attains a fixed value.

This happens as in this range |x – 2| = x – 2 and |3.6 – x| = 3.6 – x

|x − 2| + |3.6 − x| = x – 2 + 3.6 – x = 1.6

 

When x < 2, x – 2 < 0, |x – 2| > 0

Also, as –x > –2, 3.6 – x > 3.6 – 2

3.6 – x > 1.6

|x − 2| + |3.6 − x| > 1.6

 

Similarly, when x > 3.6,

|3.6 – x| > 0 and |x – 2| > 1.6

|x − 2| + |3.6 − x| > 1.6

Thus we can say that g(x) has the minimum value in the range 2 ≤ x ≤ 3.6

As f(x) = g(x) + |2.5 – x|,  f(x) attains the minimum value when 2 ≤ x ≤ 3.6 and |2.5 – x| is minimum.

This happens when x = 2.5  f(x) attains minimum when x = 2.5 Hence, option 2.

 

Alternatively, f(x) = |x − 2| + |2.5 − x| + |3.6 − x| Substituting the value of x from the given options in the function,  when x = 2.3 f(x) = 0.3 + 0.2 + 1.3 = 1.8

 

when x = 2.5 f(x) = 0.5 + 0 + 1.1 = 1.6

 

when x = 2.7 f(x) = 0.7 + 0.2 + 0.9 = 1.8

 

Substituting any arbitrary real values of x in f(x), when x = 2 f(x) = 0 + 0.5 + 1.6 = 2.1

 

when x = 3 f(x) = 1 + 0.5 + 0.6 = 2.1

 

For any other value of x, f(x) will be greater than 1.6 Hence, f(x) is minimum when x = 2.5

Hence, option 2 is the correct one.

Question 2



If aa+b=ac+a=ca+b\frac{a}{a+b}= \frac{a}{c+a}= \frac{c}{a+b} = r, then r cannot take any value except______.

1/2

-1

1/2 or –1

- 1/2

By option, if r = 12\frac{1}{2}

2a-b-c = 0

2b- c- a= 0

2c-b -a = 0

2(a+b+c) - (a+b+c)- (a+b+c)= 0

similarly r= -1 is also satisfied.

 

Question 3

Question-Let y = 12+13+12+13+....\frac{1}{2+\frac{1}{3+\frac{1}{2+\frac{1}{3+....}}}}

What is the value of y?

root (13+3) /2

root (13-3) /2

root (15+3) /2

root (15-3) /2



Solution-

y = 12+13+12+13+....\frac{1}{2+\frac{1}{3+\frac{1}{2+\frac{1}{3+....}}}}

Solution-

12+13+y\frac{1}{2+\frac{1}{3+y}}=> y = \frac{3+y}{2y+7}

2y2+7y+3+y⇒2y2+6y−3=02y^{2}+7y+3+y\Rightarrow 2y^{2}+6y-3=0

y=−6±4−2−34=−60±604=15−32y = \frac{-6\pm \sqrt{4-2-3}}{4}= \frac{-60\pm \sqrt{60}}{4}= \frac{\sqrt{15}-3}{2}

 

Question 4

Question- Let f(x) = ax^{2}- b |x|, where a and b are constants. Then at x =0, f(x) is</div></div><div class="answersdiv answersdivquestion17919"><div class="loading"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz//images/loading.gif"></div><div class="answerul-div"><div class="answerul clickable"><input type="radio" name="ques_ans[3]" value="skipped" class="skipped4 skippedinput"><div class="row ls-flex"><div class="col-lg-6 col-md-12 col-sm-12 col-xs-12 mq-answer-div answer-id-97234" data-ansid="97234" data-qstid="4"><div class="answer progress" id="quiz-ans-4-5"><input type="radio" name="ques_ans[3]" value="97234" class="radiobutton anslabel" id="qst4-5" name="answer_id" data-questionid="17919" data-questioncount="4" data-answerid="97234"><div class="ls-ans-title displaynone"><p>maximized whenever a> 0, b >0</p></div><div class="checkmark"></div><div class="ls-progress-bar"><div class="progress-bar txtblack" role="progressbar" style="" aria-valuenow="25" aria-valuemin="0" aria-valuemax="100"></div> <div class="answer-title-progress"><p>maximized whenever a> 0, b >0</p></div><div class="precentage"> </div> </div></div></div><div class="col-lg-6 col-md-12 col-sm-12 col-xs-12 mq-answer-div answer-id-97235" data-ansid="97235" data-qstid="4"><div class="answer progress" id="quiz-ans-4-6"><input type="radio" name="ques_ans[3]" value="97235" class="radiobutton anslabel" id="qst4-6" name="answer_id" data-questionid="17919" data-questioncount="4" data-answerid="97235"><div class="ls-ans-title displaynone"><p>maximized whenever a > 0, b < 0</p></div><div class="checkmark"></div><div class="ls-progress-bar"><div class="progress-bar txtblack" role="progressbar" style="" aria-valuenow="25" aria-valuemin="0" aria-valuemax="100"></div> <div class="answer-title-progress"><p>maximized whenever a > 0, b < 0</p></div><div class="precentage"> </div> </div></div></div></div><div class="row ls-flex"><div class="col-lg-6 col-md-12 col-sm-12 col-xs-12 mq-answer-div answer-id-97236" data-ansid="97236" data-qstid="4"><div class="answer progress" id="quiz-ans-4-7"><input type="radio" name="ques_ans[3]" value="97236" class="radiobutton anslabel" id="qst4-7" name="answer_id" data-questionid="17919" data-questioncount="4" data-answerid="97236"><div class="ls-ans-title displaynone"><p>minimized whenever a > 0, b > 0</p></div><div class="checkmark"></div><div class="ls-progress-bar"><div class="progress-bar txtblack" role="progressbar" style="" aria-valuenow="25" aria-valuemin="0" aria-valuemax="100"></div> <div class="answer-title-progress"><p>minimized whenever a > 0, b > 0</p></div><div class="precentage"> </div> </div></div></div><div class="col-lg-6 col-md-12 col-sm-12 col-xs-12 mq-answer-div answer-id-97237" data-ansid="97237" data-qstid="4"><div class="answer progress" id="quiz-ans-4-8"><input type="radio" name="ques_ans[3]" value="97237" class="radiobutton anslabel" id="qst4-8" name="answer_id" data-questionid="17919" data-questioncount="4" data-answerid="97237"><div class="ls-ans-title displaynone"><p>minimized whenever a > 0, b < 0</p></div><div class="checkmark"></div><div class="ls-progress-bar"><div class="progress-bar txtblack" role="progressbar" style="" aria-valuenow="25" aria-valuemin="0" aria-valuemax="100"></div> <div class="answer-title-progress"><p>minimized whenever a > 0, b < 0</p></div><div class="precentage"> </div> </div></div></div></div></div></div></div></div><div class="help-links-div"><div class="ls-mt-correct-content"><p><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/happy-emoji.png"><span>Good Job!</span></p></div><div class="ls-mt-wrong-content"><p><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/sad-emoji.png"><span>Oops!</span></p></div><ul class="help-links-ul"><li><a href="https://prepinsta.com/algebra/formulas/" class="help-link"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/formulas.png" target="_blank"><span>Formulas</span></a></li><li><a href="https://prepinsta.com/algebra/tips-and-tricks-and-shortcuts/" class="help-link"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/shortcut--ricks-and-tips.png" target="_blank"><span>Shortcut, Tricks and Tips</span></a></li><li><a href="https://prepinsta.com/algebra/how-to-solve-quickly/" class="help-link"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/how-to-solve-quickly.png" target="_blank"><span>How to solve quickly</span></a></li><li><a href="javascript:void(0)" class="help-link report reportquestionbtn" id="reportquestionbtn" data-qstid="17919" data-quizid="2489"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/report-the-answer.png" target="_blank"><span>Report the answer</span></a></li></ul><ul class="help-links-ul"><li><a href="https://prepinsta.com/how-to-use-prepinsta-quiz-effectively/" class="help-link" target="_blank"><img src="https://prepinsta.com/wp-content/plugins/lexcis-mtouch-quiz/images/hot-to-use.jpg" target="_blank"><span>How to use PrepInsta Quiz</span></a></li></ul></div><div style="width: 100%; overflow: hidden;"> <button class="btn btn-default pull-left anslabel skip_button" type="button" data-questioncount="4" data-questionid="17919" data-answerid="skipped" style=" padding: 10px 25px;width: auto;">Skip</button><button class="btn btn-default pull-right exp_hide_show" type="button" data-toggle="collapse" data-target="#explanation-4" aria-expanded="false" style="padding: 10px 25px;">Show Explanation <i class="fas fa-chevron-down" style="font-size: 10px; "></i></button></div><div class="explanation collapse in" id="explanation-4"><div class="toggle-tab tab text-center"><ul class="tabs quiz-tabs quiz-tabs17919 "><li class="tab-link current" data-tab="prep17919" data-mainid="17919"><div>PrepInsta Explanation</div></li><li class="tab-link" data-tab="user17919" data-mainid="17919"><div>User Explanation</div></li></ul></div><!--<div class="explanatoindiv">Question Explanation</div>--> <div class="tab-content17919"><div id="prep17919" class="tab-content current tab-contentprep17919 prepexplanation_17919"><div class="default_prep17919">Once you attempt the question then PrepInsta explanation will be displayed.</div><div class="correct_prep17919" style="display:none"><p>Solution-<br /> <br /> f(x)= ax^{2}-b|x|

ifx>0f(x)=ax2−bxif x>0 f(x)= ax^{2} -bx

ifx>0f(x)=ax2−bxif x>0 f(x)= ax^{2} -bx

so if a> 0 and b< 0. f" (x) will be minimum at x=0

for x<0

f(x)=ax2−bxf(x)= ax^{2} -bx

f"(x) = 2ax+ b f"(x) = 2a

In this case also when a>0 , b <0 f"(x) >0 or f(x) will be minimum value at x=0

Start

Question 5

A rectangular floor is fully covered with square tiles of identical size. The tiles on the edges are white and the tiles in the interior are red. The number of white tiles is the same as the number of red tiles. A possible value of the number of tiles along one edge of the floor is

10

12

14

16

let the length of rectangle floor be L and breadth be B and X be the size of one tile
and N & M be the no. of the tiles along length L and breadth B than NX = L & MX = B
area of white tiles = area of red tiles = 1/2
now 2NX^2 + 2(M-2)X^2 =1/2(LB) = 1/2(NX) = 1/2(MNX^2)
solving this v get that 4M + 4 N - MN = 8
now looking from the options
only M = 12 gives integer value of N (that is equal to 5)

Question 6



From a square piece of card-board measuring 2a on each side of a box with no top is to be formed by cutting out from each corner a square with sides b and bending up the flaps. The value of b for which the box has the greatest volume is


 


b=a/5

b=a/4

b=2a/3

b=a/2

here side of square should be 2a cm (misprint)
ans= b=a/3 using maxima and minima method
Vol= v= (2a-2b)^2 * b

Question 7

 



The sum of the areas of two circles that touch other externally is 153 pi. If the sum of their radius is 1. Find the ratio of the longer to the smaller radius.

4

2

3

None of these

Let the radius of larger circle be x and smaller circle be y.

Sum of area of two circle = 153Ï€

Area of smaller circle + Area of larger circle = 153Ï€

πx² + πy² = 153π

∴ x² + y² = 153 ----------(1)

Sum of radii is 15

∴ x + y = 15 ----------(2)

solve equation (1) and (2) using substituting method

y = 15 - x

substitute into eq(1)

x² + (15-x)² = 153

2x² -30x + 72 = 0

x² - 15x + 36 = 0

(x-12)(x-3) = 0

x = 12 and x = 3

As we assumed x is larger radius

So, x = 12 and y = 3

Now, we find the ratio of larger radii to smaller radii

Ratio 123⇒4:1\frac{12}{3}\Rightarrow 4:1

Hence, The ratio is 4:1

 

["0","40","60","80","100"]
["Need more practice!","Keep trying!","Not bad!","Good work!","Perfect!"]

Analytics below shows your performance in various Mocks on PrepInsta

Your average Analytics for this Quiz

Rank

-

Percentile

0%

Completed

0/7

Accuracy

0%