Complete Guide to Shodan

Collect. Analyze. Visualize. Make Internet Intelligence Work For You.

Complete Guide to Shodan

Collect. Analyze. Visualize. Make Internet Intelligence Work for
You.

John Matherly

This book is for sale at http://leanpub.com/shodan
This version was published on 2016-02-25

[\

Leanpub

L .

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean

Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right

book and build traction once you do.

*k Xk Xk kK Xk

© 2015 - 2016 Shodan, LLC

Table of Contents

Introduction
All About the Data

SSL In Depth
Data Collection

Web Interfaces
Search Query Explained
Introducing Filters

Shodan Search Engine
Shodan Maps

Shodan Exploits
Shodan Images

Exercises: Website

External Tools
Shodan Command-Line Interface
Maltego Add-On
Browser Plug-Ins
Exercises: Command-Line Interface

Developer API
Usage Limits

Introducing Facets

Getting Started
Initialization

Search

Host Lookup

Scanning

Real-Time Stream

Network Alert

Example: Public MongoDB Data
Exercises: Shodan API

Industrial Control Systems

Common Abbreviations
Protocols

Securing Internet-Connected ICS
Use Cases

Appendix A: Banner Specification

General Properties
HTTP(S) Properties
L.ocation Properties

SSL, Properties
Special Properties

Example

Appendix B: List of Search Filters
General Filters

NTP Filters
SSL Filters

Telnet Filters

Appendix C: Search Facets
General Facets

NTP Facets
SSH Facets
SSI. Facets
Telnet Facets

Appendix D: List of Ports

Appendix E: Sample SSI. Banner

Exercise Solutions
Website

Command-Line Interface
Shodan API

Introduction

Shodan is a search engine for Internet-connected devices. Web search engines, such as
Google and Bing, are great for finding websites. But what if you’re interested in finding
computers running a certain piece of software (such as Apache)? Or if you want to know
which version of Microsoft IIS is the most popular? Or you want to see how many
anonymous FTP servers there are? Maybe a new vulnerability came out and you want to
see how many hosts it could infect? Traditional web search engines don’t let you answer
those questions.

All About the Data

Banner

The basic unit of data that Shodan gathers is the banner. The banner is textual
information that describes a service on a device. For web servers this would be the headers
that are returned or for Telnet it would be the login screen.

The content of the banner varies greatly depending on the type of service. For example,
here is a typical HTTP banner:

HTTP/1.1 200 OK

Server:. nginx/1.1.19

Date: Sat, 03 Oct 2015 06:09:24 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 6466

Connection: keep-alive

The above banner shows that the device is running the nginx web server software with a
version of 1.1.19. To show how different the banners can look like, here is a banner for the
Siemens S7 industrial control system protocol:

Copyright: Original Siemens Equipment

PLC name: S7_Turbine

Module type: CPU 313C

Unknown (129): Boot Loader A
Module: 6ES7 313-5BG04-0ABO v.0.3

Basic Firmware: v.3.3.8

Module name: CPU 313C

Serial number of module: S Q-D9U083642013
Plant identification:

Basic Hardware: 6ES7 313-5BG04-0ABO v.0.3

The Siemens S7 protocol returns a completely different banner, this time providing
information about the firmware, its serial number and a lot of detailed data to describe the

device.

You have to decide what type of service you’re interested in when searching in Shodan
because the banners vary greatly.

Note: Shodan lets you search for banners - not hosts. This means that if a single IP
exposes many services they would be represented as separate results.

Device Metadata

In addition to the banner, Shodan also grabs meta-data about the device such as its
geographic location, hostname, operating system and more (see Appendix A). Most of the
meta-data is searchable via the main Shodan website, however a few fields are only
available to users ot the developer API.

IPv6

As of October 2015, Shodan gathers millions of banners per month for devices accessible
on IPv6. Those numbers still pale in comparison to the hundreds of millions of banners

gathered for IPv4 but it is expected to grow over the coming years.

SSL In Depth

SSL is becoming an evermore important aspect of serving and consuming content on the
Internet, so it’s only fit that Shodan extends the information that it gathers for every SSL-
capable service. The banners for SSL services, such as HT'TPS, include not just the SSL
certificate but also much more. All the collected SSL information discussed below is
stored in the ssl property on the banner (see Appendix A and Appendix E).

Vulnerability Testing

Heartbleed

If the service is vulnerable to Heartbleed then the banner contains 2 additional properties.
opts.heartbleed contains the raw response from running the Heartbleed test against the
service. Note that for the test the crawlers only grab a small overtlow to confirm the
service is affected by Heartbleed but it doesn’t grab enough data to leak private keys. The
crawlers also added CVE-2014-0160 to the opts.vulns list if the device is vulnerabel.
However, if the device is not vulnerable then it adds “!CVE-2014-0160". If an entry in
opts.vulns is prefixed with a ! or - then the service is not vulnerable to the given CVE.

{
"opts": {
"heartbleed”: "... 174.142.92.126:8443 - VULNERABLE\N",
"vulns": ["CVE-2014-0160"]
3
)

Shodan also supports searching by the vulnerability information. For example, to search
Shodan for devices in the USA that are affected by Heartbleed use:

country:US vuln:CVE-2014-0160

FREAK

If the service supports EXPORT ciphers then the crawlers add the “CVE-2015-0204” item
to the opts.vulns property:

"opts': {
"vulns": ["CVE-2015-0204"]
ks

Logjam

The crawlers try to connect to the SSL service using ephemeral Diffie-Hellman ciphers
and if the connection succeeds the following information is stored:

"dhparams": {
"prime": "bbbc2dcad84674907c43fcf580e9..",
"public_key": "49858el1f32aefed4af39b28f51c..",
"bits":. 1024,
"generator": 2,
"fingerprint": "nginx/Hardcoded 1024-bit prime"

}

Version

Normally, when a browser connects to an SSL service it will negotiate the SSL version
and cipher that should be used with the server. They will then agree on a certain SSL
version, such as TLSv1.2, and then use that for the communication.

Shodan crawlers start out the SSL testing by doing a normal request as outlined above
where they negotiate with the server. However, afterwards they also explicitly try
connecting to the server using a specific SSL version. In other words, the crawlers attempt
to connect to the server using SSLv2, SSLV3, TLSv1.0, TLSv1.1 and TLSv1.2 explicitly
to determine all the versions that the SSL service supports. The gathered information is
made available in the ssl.versions field:

{
"551": {
'versions”:. ["TLSv1l", "SSLv3", "-SSLv2", "-TLSvl1l.1", "-TLSv1.2"]
3

}

If the version has a - (dash) in front of the version, then the device does not support that
SSL version. If the version doesn’t begin with a -, then the service supports the given SSL

version. For example, the above server supports:

TLSv1
SSLv3

And it denies versions:

SSLv2
TLSv1l.1
TLSv1.?2

The version information can also be searched over the website/ API. For example, the
following search query would return all SSL services (HTTPS, POP3 with SSL, etc.) that
allow connections using SSLv?2:

ssl.version:sslv?

Follow the Chain

The certificate chain is the list of SSL certificates from the root to the end-user. The
banner for SSL services includes a ssl.chain property that includes all of the SSL
certificates of the chain in PEM-serialized certificates.

Data Collection

Frequency

The Shodan crawlers work 24/7 and update the database in real-time. At any moment you
query the Shodan website you’re getting the latest picture of the Internet.

Distributed

Crawlers are present in countries around the world, including:

e USA (East and West Coast)

China
Iceland
France
Taiwan
Vietnam

Romania
Czech Republic

Data is collected from around the world to prevent geographic bias. For example, many
system administrators in the USA block entire Chinese IP ranges. Distributing Shodan
crawlers around the world ensures that any sort of country-wide blocking won’t affect data
gathering.

Randomized

The basic algorithm for the crawlers is:

Generate a random IPv4 address

Generate a random port to test from the list of ports that Shodan understands
Check the random IPv4 address on the random port and grab a banner

Goto 1

geip Tk Bk

This means that the crawlers don’t scan incremental network ranges. The crawling is
performed completely random to ensure a uniform coverage of the Internet and prevent
bias in the data at any given time.

Web Interfaces

The easiest way to access the data that Shodan gathers is through the web interfaces.
Almost all of them let you enter a search query, so lets discuss that first:

Search Query Explained

By default, the search query only looks at the main banner text and doesn’t search the

meta-data. For example, if you’re searching for “Google” then the results will only include
results where the text “Google” was shown in the banner; it wouldn’t necessarily return

results for Google’s network range.

302 Found
HTTP/1.1 382 Moved Temporarily

ERS Date: Sun, 04 Oct 2015 22:27:08 GMT

¢l Canada Server: Google Search Appliance

Details Content-Type: text/html
Location: /EnterpriseController
Explres: Sun, @4 Oct 2015 22:27:08 GMI
Cache-Control: private, max-age=@
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Shodan search for “Google”

As seen above, a search for “Google” returns a lot of Google Search Appliances that
organizations have purchased and connected to the Internet; it doesn’t return Google’s
Servers.

Shodan will try to find results matching all search terms, which means that implicitly

there is a + or AND between each search term. For example, the search queries “apache +

1.3” is equivalent to “apache 1.3”.

To search the meta-data you need to use search filters.

Introducing Filters

Filters are special keywords that Shodan uses to let you narrow search results based on the
meta-data of a service or device. The format for entering filters is:

filtername:value

Important: There is no space between the colon “:” and the value.

To use a value that contains a space with a filter you have to wrap the value in double
quotes. For example, to find all devices on the Internet that are located in San Diego you
would search for:

city:"San Diego"

A few filters let you specity several values that are separated by a comma “,”. For
example, to find devices that are running Telnet on ports 23 and 1023:

port:23,1023

If a filter doesn’t allow commas in its value (ex. port, hostname, net) then it lets you
provide multiple values. Filters can also be used to exclude results by prepending a minus
sign “-“ to the filter. For example, the following would return all devices that aren’t
located in San Diego:

-city:"San Diego"

Shodan supports a lot of filters, a few popular ones are:

Filter . .

Description Example
Name P P
category Available categories: ics, malware
city Name of the city

country Full country name

Only show results inside the provided IP
range in CIDR format

Narrow results based on the organization org:”Verizon
that owns the IP Wireless”

net net:190.30.40.0/24

org

See Appendix B for a full list of search filters that are available.

Shodan Search Engine

The main interface for accessing the data gathered by Shodan is via its search engine
located at https://www.shodan.io

SHANGHAI

See the Big Picture

Websites ar st one part of the Internet. There ar ower plants, Smart T's
refrigera ‘a1:lr ich more that can be found w r~ Shodan

o Explure the |ﬂtErF‘|E"l‘ of Thmga
se shodan to drs er which of your devices are connected to the Internet, where
they are loca -~J=u_‘|'.r“ ng them.
Mnmtc}r Network Secur|ty
&p trae I 3l the computers on your Nnelwork that e directly acoessible from the
nternet. Shodan lets you understand y r:llblt.-i ootprint.

gl Geta CDmpetlth Adva ntage
| .,.: Who 1SINg s UCE 7 Whi They lIocated? Use Shodan to perform
Y empirical mar Le in L'-'-"HI_.._"-"'I e

[IETTIETIEN The Washington Post KA [N I G1E[E)

Analyze the Internet in Seconds

Search the internet for devices with Shodan and use the web interface to quickly generate beautiful reports

By default, the search query will look at the data collected within the past 30 days. This is
a change from the old website at shodanhqg.com, which searched the entire Shodan
database by default. This means that the results you get from the website are recent and
provide an accurate view of the Internet at the moment.

In addition to searching, the website also provides the following functionality:

Download Data

After completing a search there will be a button at the top called Download Data.

Clicking on that button will provide you with the option of downloading the search results
in JSON, CSV or XML formats.

& Download Data

Use export credits to download results at a rate of 1 export credit = 10,000 results

You have 103,601 credits available which means you can download up to 1,036,010,000
rasults. Click herato bi ~rEc] T

Number of recoros:] 0,000

File type:

The JSON format generates a file where each line contains the full banner and all
accompanying meta-data that Shodan gathers. This is the preferred format as it saves all
available information. And the format is compatible with the Shodan command-line client,

meaning you can download data from the Shodan website then process it further using the
terminal.

The CSV format returns a file containing the IP, port, banner, organization and hostnames
for the banner. It doesn’t contain all the information that Shodan gathers due to limitations
in the CSV tile format. Use this if you only care about the basic information of the results
and want to quickly load it into external tools such as Excel.

The XML format is the old, deprecated way of saving search results. It is harder to work
with than JSON and consumes more space, thereby making it suboptimal for most
situations.

Downloading data consumes export credits, which are one-time use and purchased on the
website. They aren’t associated in any way with the Shodan API and they don’t
automatically renew every month. 1 export credit can be used to download up to 10,000
results.

Data files generated by the website can be retrieved in the Downloads section of the

website, which you can visit by clicking on the n button in the upper right corner.

Generate Report

The website lets you generate a report based off of a search query. The report contains
graphs/ charts providing you a big picture view of how the results are distributed across

the Internet. This feature is free and available to anyone.
% stooan N -

Universities Needing Toner

Top Countries
. United States

. Korea, Republic of

. Canada

. Talwan, Province of China
. Czech Republic

. United Kingdom

. Hong Kong

. Greece

BRIGIVERIE

. Slovakia

1
2
3
4
5
6
,
o
9
0

—_—

Top Organizations

Univeramy of Minnasoim

Boston Univeraity -

When you generate a report you are asking Shodan to take a snapshot of the search results
and provide an aggregate overview. Once the report has been generated, it doesn’t change
or automatically update as new data is being collected by Shodan. This also means that
you can generate a report once a month and keep track of changes over time by comparing

it to reports of previous months. By clicking on the - button in the top right corner
you can get a listing of previously generated reports.

Shared Search Queries

Finding specific devices requires knowledge about the software they run and how they
respond to banner grabs over the Internet. Fortunately, it is possible to leverage the shared
knowledge of the community using the search directory on Shodan. People are able to
readily describe, tag and share their search queries for others to use. If you’re interested in
getting started with Shodan, the shared searches should be your first stop.

L EODUIGE BeRIEnes

T Webcam
Dest Ip cam 52arch | have founc b =

Cams
admin admin

Nelcam

Netcam

dreambox
irEamibo s

default password
ISC0 ' Finds resuits with "default password® in the banner; the named defaults might work!

netgear

User. admin pass. password

108.223.86.43

irenanet IF Lam

sgsh
5 ".r

Houter w, Default Info
Routers that give thilr defaull usermname’ password as aamind1.234 in thesr Dannes

Warning: Shared search queries are publicly viewable. Do not share queries that are
sensitive or you don’t want others to know about.

Example: Finding Non-Default Services

A common reaction I get when talking about devices exposed on the Internet is something
like the following:

|- XDRosenheim 1 pi

And this is why my server is whitelisted, password protected and not on port 25565. I don't like
data miners...

Specifically, the idea that running the service (in this case Minecraft) on a non-standard
port is a good way to stay hidden. In security circles this is also known as the concept of
security by obscurity, and it’s considered a largely ineffective, deprecated idea. What’s
worse is that it might give you the owner of the server/ device a false sense of security. For
example, lets take a look at people running OpenSSH on a non-standard port. To do this
we will use the following search query:

product:openssh -port:22

The product filter is used to only show OpenSSH servers while -port:22 tells Shodan to
exclude all results that were collected from the standard SSH port (22). To get a better
overview of the search results lets generate a report:

Top Countries

United States 139,969
Australia 59,493
Germany 24,584
Brazil 24,405
China 15123
France 14,708
Russian Federation 11,065
United Kingdom 10,692
Poland 8,496
Canada 7,484

&
2
3.
4
D,
6.
i
8.
9.
0.

=%

The report also gives us a breakdown of the most common non-standard ports:

2222: 525,950
5000: 47,439
23: 13,482
26: 7,569
5555: 6,856
9999: 6,286
82: 6,046
2323: 3,622
6666: 2,735
3333: 2,644

& 2o SRSl B8 T s B D

—

These numbers don’t look that random to me... Right away you should realize that your
random choice of non-standard port might not be so unique. Port 2222 is popular the same
way that HTTP on port 8080 is popular, and it’s also the detault port for the Kippo
honeypot though I doubt that many people are running honeypots. The next most popular
port is 5000, which didn’t follow the same pattern as the other ports to me (repeating/
symmetric numbers). And it was around the same time that I realized that Australia was
the 2nd most popular country to run OpenSSH on a non-standard port. I decided to take a
closer look at Australia, and it turns out that there are nearly the same amount of servers
running OpenSSH on port 5000 as they are on the default port 22. About 68,000 devices
are running on the default port, and 54,000 on port 5000. Looking at a few banners we can
determine that this is the SSH fingerprint that they all share:

5b:a2:5a:9a:91:28:60:9¢c:92:2b:9e:bb:7f:7Cc:2e:06

It appears that the Australian ISP BigPond installs/ configures networking gear that not
only runs OpenSSH on port 5000 (most likely for remote management) but also has the
same SSH keys installed on all of them. The devices also happen to run an old version of
OpenSSH that was released on September 4th 2007. There’s no guarantee that running
OpenSSH on the default port would’ve made them more security conscious, but their
installation of ~54,000 devices is 25% of the total number of OpenSSH servers on the
Internet running version 4.7 (sidenote: the most popular version of OpenSSH is 5.3).

Shodan Maps

Shodan Maps provides a way to explore search results visually instead of the text-based
main website. It displays up to 1,000 results at a time and as you zoom in/ out Maps
adjusts the search query to only show results for the area you’re looking at.

All search filters that work for the main Shodan website also work on Maps.

Map Styles

There are a variety of map styles available to present the data to your preference. Click on

the ﬂ gear button next to the search button for a list of options.

Satellite

l-.“'l'll:l
Danmark

ells am

ra 8 sl 5
: United
Kingdom

Benapryth
of lrelanc
. :-'-r*.n-;-.qr- sl |y

" Y T] o
a,.‘.:ll_.i ':-JHII Falulea

Belpinie =, Deyvtschland ' .oredes
. Beygghe 5 \
-‘] ¥
o PFrarddurt an Ve o 4 " :
o/ o Fi - ' Lesky

s i gilka s
e, E
hml sgsal
Magyare-izag

. [F] '

Hrvatska Ramdnin

b prpuy

Satellite without Labels

Sl
Trbd b B
Mizusithi MELSEC -
OMEBON FiYS

=le=ctric SHTP

GENAr

Fogz Clreaee L
M=l
Interrat Bl

rm Mosting L
LT B
Naohls Technology L
Eniu

varifon wineais

Streets (Light)

i]
LR RTEN SR
. Mo
Lachja
oy el) Danfark [+
*—t‘ e | = W el
A Tewe Bl
rgwum fan LMited - FRRTER T 7 b
Mitpubishe MELIEC.Q B etom e ‘o 1oL n
?uim i‘-"l"ﬂ F-Fuh“ Y e Y N 1) Lsaif .:...; Myl s
General Bectric SRTP £ brud I:? . °
A ’ J - i
Prol oS . ‘M‘I'U.'I"r't""" Bibail o '
- . s i e
Ll ‘ .aﬁllh|.,-.u-1 Foluea “ A
w AR L = n .
“5 >l h.LI‘..T':- — ﬂfl:‘.[‘}l.,"lldllu Tl e
IL _— I oy
B g b 2
A, ;..d-.-. . ﬁ"'"“'" ELI_"-[,U-'L iy
¥ -
ol *'I- .l.i'x#:
o i . WL s . | ey 1‘_,
. F‘I".F.'f 'H.. I-I.Irr'r] -rl-:l#""]'
B L2 Elid ol T e g Wi i
Magyargrira
Nethem osting LiC | e £y i ’E’ .
Intswmat RevaniTD B : 1 " g .
Nobls Technalogy Gr 30 - T—— Hrvatshs Mo Al s
E_flm " 1 - |
“'![J1 H‘I‘H'ﬂ T ETEE Al il i |“
Lt
il iy el b e awe P LE o e
- Ly Mk Pl it B WL
i s Hrl-?..! ,i._._.l_, Do ages
nF 3 b L ﬂ L]
faz ‘h_l m!lvrliﬂr o Ll LIS g] R i e ' :
bl s . b U LA L
Bhiasd vl
[= '..I.JL.IJ ;|
Lwnaall FivOEa
L T n
s e © EETYwg
" el ' il
] tu'ln
- i '_Ir‘--: et e willa -

Streets (Dark)

#% SHODAN

L TE S |

e L

Tridiim Fos
Miteunithi MELSEC-
COWMBRON Fiws
GEneral EleSTric SATE
FreLasmlo

I W g B
Relham Mostine LLC
InEerrat B LT B
Naohls Technology b
Eniu

varifon w

Lapana

Streets (Green)

Triaum Faos

M=ubithl
OMEOMN FNS
=neral slesy

Frelanls

| TF L
Rl nam Mostiae LLT
IinEprrat Biess LTD B
Mnohls Tecrhn I-'P:F ol
Efzu

varifon Wieess

% SHODAN

Streets (Red)

= L
Tridiim Faa
MHA=ubinhl WELSEC -
OMBON PSS
GEneral Electric SATP

Frelasmls

bz Clrpaereilrl o
Relham Mosting LLT
intmrrat B LTE B
Naohls Technology G
Eniu

varilon wWimnesis

T Al il duis

% 'SHODAN

Pirate

Toaal At 1432 374

= St Rl S

Tridium Fas
Mitzunithi MELSFEC-Q
OMRON FINS
General Eleciric SATP
PreConDs

Tl -
Y. 4t / Y Bl
: g Vi
i & ey .rr.'i._. " i Wy "

o Orprdrndiormn & ﬂ i E.
Rwthem Mosting LLE 1 ol | .
Interret Rimea LTD 8., Lo . 00 . n G -
Nobis Technology Gr.. 1 6°3 " e y 1@‘ . a : , M
Eniu
Var lZon Winsleis . i B ilrsest

. i . oy

i e
, N . i
g ! Rattne : 7 '
I"'. il |
A -I "!l ﬂl l]
*] P
| i rj : i
I "') [iy
Viaisa 1‘- h Fla
Aliguer unes -
ir- , g " B

Shodan Exploits

Shodan Exploits collects vulnerabilities and exploits from CVE, Exploit DB and
Metasploit to make it searchable via web interface.

'. SH O DAN EXPLOITS

The search filters available for Exploits are ditferent than the rest of Shodan, though an
attempt was made to keep them similar when possible.

Important: By default, Exploits will search the entire content of the available exploit
information including meta-data. This is unlike Shodan, which only searches the
banner text if no other filters are specified.

The following search filters are available:

Name Description

author Author of the vulnerability/ exploit

description Description

platform Platform that it targets (ex: php, windows, linux)

type Exploit type (ex: remote, dos)

Shodan Images

For a quick way to browse all the screenshots that Shodan collects check out Shodan
Images. It is a user-friendly interface around the has_screenshot filter.

®% SHODAN

B CobOm

The search box at the top uses the same syntax as the main Shodan search engine. It is
most useful to use the search box to filter by organization or netblock. However, it can
also be used to filter the types of images that are shown.

Image data is gathered from 4 different sources:

VNC
RTSP

Webcams
X Windows

Each image source comes from a different port/ service and therefor has a different
banner. This means that if you only want to see images from webcams you could search
for:

HTTP

To search for VNC you can search using authentication disabled and for RTSP you
simply search with RTSP.

The images can also be found using the main Shodan website or Shodan Maps by using
the has_screenshot:true filter in the search query. For example, to find images of VNC

servers that have disabled authentication search for has screenshot:true authentication
disabled.

Exercises: Website

Exercise 1

Find the 4SICS website using Shodan.

Tip: Check out Appendix B for a list of search filters.

Exercise 2

Find the Rastalvskarn powerplant.

Tip: It is running anonymous VINC and is located in the Swedish city of Nora

Exercise 3

How many IPs in Sweden are vulnerable to Heartbleed and still support SSLv2?

How many IPs are vulnerable to Heartbleed at your organization?

Exercise 4

Find all the industrial control systems in your town.

Exercise 5

Which RAT is most popular in Sweden?

External Tools

Shodan Command-Line Interface

Getting Started

The shodan command-line interface is packaged with the official Python library for
Shodan, which means if you’re running the latest version of the library you already have
access to the CLI. To install the new tool simply execute:

easy_1install shodan

Once the tool is installed it has to be initialized with your API key:

shodan init YOUR_API_KEY
Visit https://account.shodan.io to retrieve the API key for your account.

alert

The alert command provides you the ability to list, clear and remove network alerts that
were created using the API.

convert

Convert the compressed JSON file generated by Shodan into a different file format. At the
moment it only supports output to kml.

count

Returns the number of results for a search query.

$ shodan count microsoft 11s 6.0
5360594

download

Search Shodan and download the results into a file where each line is a JSON banner (see
Appendix A).

By default it will only download 1,000 results, if you want to download more look at the -
-1imit flag.

The downlpad command is what you should be using most often when getting results from
Shodan since it lets you save the results and process them afterwards using the parse
command.cBecalse paging through results uses query credits, it makes sense to always
store searches that you’re doing so you won’t need to use query credits for a search you
already did in the past.

=

=
=
-
-
e
o
"
=
" i
\

host

See information about the host such as where it’s located, what ports are open and which
organization owns the IP.

$ shodan host 189.201.128.250

Hostnames: customer-250.xertix.com
ELity: Mexico

Country: Mex1ico

Organization: Metro Net, S.A.P.I. de C.V.
Number of open ports: 1

Vulnerabilities:

Ports:

Fortinet FortiGate 50B or FortiWifi 80C firewall http config
| -- SSL Versions: SSLv3, TLSv1l, TLSv1l.1, TLSv1.2
| -- Diffie-Hellman Parameters:

Bits: 1024

Generator: 2
Fingerprint: RFC2409/0akley Group 2

Info
Obtain general information about your API plan, including how many query and scan
credits you have remaining this month.

$ shodan info
Query credits avallable: 5102
Scan credits availilable: 249

myip
Returns your Internet-facing IP address.

$ shodan myip
199.30.49.210

parse

Use parse to analyze a file that was generated using the download command. It lets you
filter out the fields that you’re interested in, convert the JSON to a CSV and is friendly for

pipe-ing to other scripts.

The following command outputs the IP address, port and organization in CSV format for
the previously downloaded Microsoft-1IS data:

$ shodan parse --fields 1ip_str,port,org --separator , microsoft-data.json.gz

SCan

The scan command provides a few sub-commands but the most important one is submit
which lets you perform network scans using Shodan.

$ shodan scan submit 202.69.165.20

achillean@demo:~$ shodan scan submit 202.69.165.20

Starting Shodan scan at 2015-07-24 04:14 (100000 scan credits left)

Country Philippines
City Pampanga

Organization ComClark Network & Technology Corp.

Open Ports:
/TCp
/tcp

/tCp VMware Authentication Daemon (1.10)

search

This command lets you search Shodan and view the results in a terminal-friendly way. By
default it will display the IP, port, hostnames and data. You can use the —fields parameter

to print whichever banner fields you’re interested in.

For example, to search Microsoft IIS 6.0 and print out their IP, port, organization and
hostnames use the following command:

$ shodan search --fields 1p_str,port,org, hostnames microsoft 1is 6.0

stats

The stats command lets you print the facets for a search query.

For example, the following command shows the most popular countries where Apache

web servers are located in:

$ shodan stats --facets country apache
Top 10 Results for Facet: country

us
DE
CN
JP
GB
NL
FR
CA
RU
BR

8,336,729
4,512,172
1,470, 434
1,093, 699
832221
684,432
667,871
501, 630
324,698
266,788

stream

The stream command provides access to the real-time stream of data that the Shodan
crawlers collect.

achillean@demo:~$ shodan stream --help
Usage: shodan stream [OPTIONS]

Stream data in real-time.

Options:

--color / --no-color

--flelds TEXT List of properties to output.

--separator TEXT The separator between the properties of the search
results.

--1limit INTEGER The number of results you want to download. -1 to
download all the data possible.

--datadir TEXT Save the stream data into the specified directory as
.json.gz files.

--ports TEXT A comma-separated list of ports to grab data on.

--quiet Disable the printing of information to the screen.

--streamer TEXT Specify a custom Shodan stream server to use for
grabbing data.

-h, --help Show this message and exit.

The command supports many different flags, however there are 2 that are important to
mention:

—datadir

The —datadir flag lets you specify a directory in which the streamed data should be
stored. The files generated in the —datadir directory have the following naming
convention:

YYYY-MM-DD. json.gz

A sample file name would be “2016-01-15.json.gz”. Each day a new file is automatically
generated as long as you keep the stream running. For example, the following command
downloads all the data from the real-time stream and saves it in a directory called

/var/lib/shodan/:

shodan stream --datadir /var/lib/shodan/

~limit

The —limit tlag specifies how many results that should be downloaded. By default, the
stream command runs forever until you exit the tool. However, if you’re only interested in

collecting a sample of data then the —limit flag ensures you gather a small amount of
records. For example:

shodan stream --1imit 100

The above command would connect to the Shodan real-time stream, print out the first 100
records that are received and then exit.

—-ports

The —ports tlag accepts a comma-separated list of ports to let you stream only records
gathered from those ports. The following command prints out a stream of banners that
were collected from services running on port 80 or 8080:

shodan stream --ports 80,8080

Example: Telnet Research

Lets assume we want to perform research into devices on the Internet running Telnet. As a
starting point we can combine all of the aforementioned commands into the following:

mkdir telnet-data
shodan stream --ports 23,1023,2323 --datadir telnet-data/ --limit 10000

First, we create a directory called telnet-data to store the Telnet data. Then we request
10,000 records (—limit 10000) from the stream on common Telnet ports (—ports

23,1023,2323) and store the results in the previously created directory (—datadir telnet-
data/).

Maltego Add-On

Maltego is an open source intelligence and forensics application; it lets you visually
explore and correlate data from a variety of sources.

Mataps Tosowaa CE 14 0

The Shodan add-on for Maltego provides 2 new entities (Service and Exploit) and 5
transforms:

searchShodan
searchShodanByDomain
searchShodanByNetblock
toShodanHost
searchExploits

Browser Plug-Ins

There are plugins available for both Chrome and Firefox that let you see what services a
website exposes.

Exercises: Command-Line Interface

Exercise 1

Download the IPs vulnerable to Heartbleed in Sweden and Norway using the Shodan CLI.

Filter out the results for Sweden and store them in a separate file.

Note: Uncompress the file and look at the raw data to see the raw response from the
Heartbleed test.

Exercise 2

Download 1,000 recent banners using the real-time stream and then map them using
Google Maps.

Tip: shodan convert

Exercise 3

Write a script to download a list of known malware IPs and block any outgoing tratfic to
them.

Tip: iptables -A OUTPUT -d x.x.x.x -j DROP

Developer API

Shodan provides a developer API (https://developer.shdan.io/api) for programmatic access
to the information that is collected. All of the websites and tools, including the main
Shodan website, are powered by the API. Everything that can be done via the website can
be accomplished from within your own code.

The API is divided into 2 parts: REST API and Streaming API. The REST API provides
methods to search Shodan, look up hosts, get summary information on queries and a
variety of utility methods to make developing easier. The Streaming API provides a raw,
real-time feed of the data that Shodan is currently collecting. There are several feeds that
can be subscribed to, but the data can’t be searched or otherwise interacted with; it’s a live

feed of data meant for large-scale consumption of Shodan’s information.

Note: Only users with an API subscription are able to access the Streaming API.

Usage Limits
There are 3 methods of the API that get limited depending on your API plan:

1. Searching To limit the number of searches that can be performed per month Shodan
uses query credits. 1 query credits is used when you perform a search containing
filters or go past the 1st page. For example, if you search for “apache” that doesn’t
ue any query credits. If you search for “apache country:US” that would use 1 query
credit. Likewise, if you searched for the 2nd page of results for “apache” that would
use 1 query credit. Finally, a search query for the 2nd page of “apache country:US”
would also use up 1 query credit.

2. Scanning The on-demand scanning API uses scan credits to limit the number of
hosts that you can request Shodan to scan every month. For every host that you
request a scan of Shodan deducts 1 scan credit.

3. Network Alerts The number of IPs that can be monitored using alerts is limited
based on your API subscription. Only paid customers have access to this feature. And

you can’t create more than 100 alerts on your account.

Important: Query and scan credits get reset at the start of every month.

Introducing Facets

Facets provide aggregate information about a specific field of the banner you’re interested

in. Filters let you narrow down search results while facets let you get a big picture view of
the results. For example, the main Shodan website uses facets to provide the statistics
information on the left side of the search results:

United States 430,835

Germany 139,012
China 111,143
Russian Federation 101,453
Costa Rica B4.542
Abdicar Communications, S.A. 59,590
OVH SAS 33,674
Cogent Communications 27 988
Korea Telecom 27,682
Thorn Communications 19,005

A long list of facets are available (see Appendix C) and using the API you are in control
of which facets you care about. For example, searching for port:22 and faceting on the
ssh.fingerprint facet will give you a breakdown of which SSH fingerprints are most
commonly seen on the Internet. Facets are often the starting point for research into

Internet-wide issues such as duplicate SSH keys, negligent hosting providers or country-
wide security holes.

At the moment, facets are only available from the API and the Shodan command-line
interface.

Getting Started

All the examples will be provided in Python and assume you have access to the command-
line, though there are Shodan libraries/ clients available in other languages as well.

To install the Shodan library for Python run the following command:

easy_install shodan

If you already have it installed and want to upgrade to the latest version:

easy_install -U shodan

Initialization
The first thing that always has to be done is initializing the Shodan API object:

import shodan
apl = shodan.Shodan('YOUR API KEY')

Where YOUR API KEY is the API key for you account which you can obtain from:

https://account.shodan.io

Search

Now that we have our API object all good to go, we’re ready to perform a search:

Wrap the request 1n a try/ except block to catch errors
try:

Search Shodan

results = api.search('apache')

Show the results

print 'Results found: %s' % results|'total']

for result in results|'matches']:
print 'IP: %Ss® % result]'ip str"]
print result['data']
print "'

except shodan.APIError, e:
print 'Error: %s' % e

Stepping through the code, we first call the Shodan.search() method on the api object
which returns a dictionary of result information. We then print how many results were
found in total, and finally loop through the returned matches and print their IP and banner.
Each page of search results contains up to 100 results.

There’s a lot more information that gets returned by the function. See below for a
shortened example dictionary that Shodan. search returns:

{
'total': 8669969,

‘matches’': |

{
'data’': '"HTTP/1.0 200 OK\r\nDate: Mon, 08 Nov 2010 05:09:59 GMT\r\nSer..',

'hostnames': ['pl4tin.de'],

“2p’ { 3570573318,

‘lp_str’': '89.110.147.239°,

'os': 'FreeBSD 4.4',

'port': 80,

'timestamp': '2014-01-15T05:49:56.283713"
3

}

See Appendix A for a complete list of properties that the banner may contain.

Important: By default, a few of the large fields in the banner such as “html” get truncated
to reduce bandwidth usage. If you want to retrieve all the information simply disable
minification using minify=False. For example, the following search query for anonymous
VNC services would ensure all information is returned:

results = api.search('has_screenshot:true', minify=False)

It’s also good practice to wrap all API requests in a try/ except clause, since any error will
raise an exception. But for simplicity’s sake, I will leave that part out from now on.

The above script only outputs the results from the 1st page of results. To get the 2nd page
of results or more simply use the page parameter when doing the search request:

results = api.search('apache', page=2)

Or if you want to simply loop over all possible results there’s a method to make your life
easier called search_cursor()

for banner 1n apil.search_cursor('apache’):
print banner['ip_str'] # Print out the IP address for each banner

Important: The search_cursor () method only returns the banners and doesn’t let
you use facets. Only use it to loop over results.

Host Lookup

To see what Shodan has available on a specific IP we can use the Shodan.host () function:

Lookup the host
host = apl.host('217.140.75.46")

Print general info
print """
LIP: %5
Organization: %S
Operating System: %s
% (host| 'ip_str'], host.get('org', 'n/a'), host.get('os', 'n/a'))

Print all banners
for item 1n host['data']:
prll"lt minn
Port: %s
Banner: %s

"9 (item['port'], item['data'])

By default, Shodan only returns information on the host that was recently collected. If you
would like to get a full history of an IP address, include the history parameter. For
example:

host = apl.host('217.140.75.46"', history=True)

The above would return all banners, including for services that may no longer be active on
the host.

Scanning

Shodan crawls the Internet at least once a month, but if you want to request Shodan to
scan a network immediately you can do so using the on-demand scanning capabilities of

the APL.

Unlike scanning via a tool such as Nmap, the scanning with Shodan is done
asynchronously. This means that after you submit a request to Shodan you don’t get back
the results immediately. It is up to the developer to decide how the results of the scan
should be gathered: by looking up the IP information, searching Shodan or subscribing to
the real-time stream. The Shodan command-line interface creates a temporary network
alert after a scan was initiated and then waits for results to come through the real-time
stream.

scan = apil.scan('198.20.69.0/24")

It’s also possible to submit a list of networks at once by providing a list of addresses in
CIDR notation:

scan = api.scan(['198.20.49.30', '198.20.74.0/24'])

After submitting a scan request the API will return the following information:

{
'1d': "R2XRT5HH6X67PFAB',
‘count' : 1.
'credits _left': 5119

}

The object provides a unique id that you can use for tracking purposes, the total count of
IPs that were submitted for scanning and finally how many scan credits are left
(credits_left).

Real-Time Stream

The Streaming API is an HI'TP-based service that returns a real-time stream of data
collected by Shodan. It doesn’t provide any search or lookup capabilities, it is simply a
feed of everything that is gathered by the crawlers.

For example, here is a script that outputs a stream of banners from devices that are
vulnerable to FREAK (CVE-2015-0204):

def has_vuln(banner, vuln):
if 'vulns' in banner['opts'] and vuln 1n banner['opts']['vulns']:
return True
return False

for banner 1in apil.stream.banners():
if has_vuln(banner, 'CVE-2015-0204'):
print banner

To save space and bandwidth many properties in the banner are optional. To make
working with optional properties easier it is best to wrap access to properties in a function.
In the above example, the has_vuln() method checks whether the service is vulnerable

for the provided CVE.

Note: Regular API subscriptions only have access to 1% of the feed. 100% access is
available to data license customers only.

Network Alert

A network alert is a real-time feed of data that is being collected by Shodan for a network
range. To get started with network alerts requires 2 steps:

Creating a Network Alert

To create a network alert you ned to provide a name and a network range. The name
should be descriptive to let you know what the alert is monitoring or why it was created.

alert = api.create_alert('Production network', '198.20.69.0/24')

As with the scan() method you can also provide a list of network ranges to monitor:

alert = api.create_alert('Production and Staging network', [
'198.20.69.0/24"',
'198.20.70.0/24"°,

1)

Note: Only a limited number of IPs can be monitored using network alerts and an
account can’t have more than 100 alerts active.

A useful trick when combining network alerts with the scanning API is to set an expiration
for the alert:

alert = api.create_alert('Temporary alert', '198.20.69.0/24', explres=60)

The above alert would be active for 60 seconds and then expire, at which point the alert
can’t be used any more.

Upon successfully creating an alert, the API will return the following object:

{
"name": "Production network",
"created": "2015-10-17T708:13:58.924581",
"expires': 0O,
"expiration": null,
"filters": {

"ip": ["198.20.69.0/24"]

I
"id": "EPGWQGS5GEELV4799",
"size": 256

}

Subscribing

Once an alert has been created it is ready to be used as a real-time stream of data for that
network.

for banner in apl.stream.alert(alert['id']):
print banner

As with the regular, real-time stream the alert () method provides an iterator where each
item is a banner as it’s being collected by the Shodan crawlers. The only argument that the
alert () method requires is the alert ID that was returned when creating the network alert.

Example: Public MongoDB Data

MongoDB is a popular NoSQL database and for a long time it didn’t come with any
authentication. This has resulted in many instances of MongoDB being publicly accessible
on the Internet. Shodan grabs a banner for these databases that contains a lot of
information about the data stored. Following is an excerpt from the banner:

MongoDB Server Information..

{

gl g.4.
"tokumxAuditVersion": "unknown",
"bits": 64,
"tokukvversion": "unknown",
"tokumxVersion": "2.0.2",
"javascripteEngine": "v8",
"version": "2.4.10",
"versionArray": [

2,

4,

10,

0

1,
"debug": false,

"compilerFlags”: "-fPIC -fno-strict-aliasing -ggdb -Wall -Wsign-compare -Wno\
-unknown-pragmas -Winvalid-pch -pipe -Wnon-virtual-dtor -Woverloaded-virtual -Wn\
o-unused-local-typedefs -fno-builtin-memcmp -03",

"maxBsonObjectSize": 16777216,

"sysInfo": "Linux vps-vivid-x64-04 2.6.32-042stab106.6 #1 SMP Mon Apr 20 14:\
48:47 MSK 2015 x86_64 x86_64 x86_64 GNU/Linux BOOST_LIB_VERSION=1_55",

"loaderFlags": " L

"gitVersion": "unknown"

¥

Basically, the banner is made up of a header that says “MongoDB Server Information”
followed by 3 JSON objects that are separated by commas. Each JSON object contains
different information about the database and I recommend you check out a full banner on
Shodan (it’s very long) by searching for:

product:MongoDB

Lets use the banner information to determine which database names are most popular and
how much data is publicly exposed on the Internet! The basic worktlow will be to:

1. Download all MongoDB banners
2. Process the downloaded file and output a list of top 10 database names as well as the
total data size

Downloading the data is simple using the Shodan command-line interface:

shodan download --limit -1 mongodb.json.gz product:mongodb

The above command says to download all results (—limit -1) into a file called
mongodb.json.gz for the search query product:mongodb. Now we just need a simple
Python script to process the Shodan data file. To easily iterate over the file we’re going to
use the shodan.helpers.iterate_files() method:

import shodan.helpers as helpers
import sys

The datarile 1s the 1st argument to the command
datafile = sys.argv[1]

for banner in helpers.iterate_files(datafile):
Now we have the banner

Since each banner is just JSON with some added header, lets process the banner into a
native Python dictionary using the simplejson library:

Strip out the MongoDB header added by Shodan
data = banner['data'].replace('MongoDB Server Information\n', '').split('\n},\n'\

) [2]

Load the database information
data = simplejson.loads(data + '}')

The only thing that’s left is keeping track of the total amount of data that’s exposed and
the most popular database names:

total_data = 0
databases = collections.defaultdict(int)

Then 1n the loop
Keep track of how much data 1s publicly accessible
total data += data['totalSize']

Keep track of which database names are most common
for db 1n data['databases’']:
databases[db['name']] += 1

Python has a useful collections.defaultdict class that automatically creates a default value
for a dictionary key if the key doesn’t yet exist. And we just access the totalSize and
databases property of the MongoDB banner to gather the information we care about.
Finally, we just need to output the actual results:

print('Total: {}'.format(humanize_bytes(total_data)))

counter = 1
for name, count 1n sorted(databases.iteritems(), key=operator.litemgetter(1l), rev\
erse=True)[:10]:

print("#{}\t{}: {}'.format(counter, name, count))

counter += 1

First, we print the total amount of data that’s exposed and we’re using a simple
humanize_bytes() method to convert bytes into human-readable format of GB/ MB/ etc.
Second, we loop sort the databases collection in reverse order by the number of times

that a certain database name was seen (key=operator.itemgetter(1)) and get the top 10
results ([:10]).

Below is the full script that reads a Shodan data file and analyzes the banner:

import collections

import operator

import shodan.helpers as helpers
import sys

import simplejson

def humanize_bytes(bytes, precision=1):
"""Return a humanized string representation of a number of bytes.

Assumes from future import division .

>>> humanize_bytes(1)
‘1 byte’
>>> humanize_bytes(1024)
‘1.0 kB’
>>> humanize_bytes(1024*123)
'123.0 kB’
>>> humanize_bytes(1024%12342)
‘12.1 MNB*
>>> humanize_bytes(1024*12342,2)
'12.05 MB'
>>> humanize_bytes(102471234,2)
‘1.2 NB'’
>>> humanize_bytes(1024*1234*1111,2)
1.31 GB'
>>> humanize_ bytes(1024*1234*1111,1)
1.3 0B
abbrevs = (

(1<<50L, 'PB'),

(1<<40L, 'TB'),

(1<<30L, 'GB'),

(1<<20L, 'MB'),

(1<<10L, 'kB'),

(1, 'bytes')
)
1T bytes ==

return 'l byte'
for factor, suffix in abbrevs:

if bytes >= factor:

break

return '%.*f %s' % (precision, bytes / factor, suffix)

total_data = ©
databases = collections.defaultdict(int)

for

banner in helpers.iterate_files(sys.argv[1l]):
try.:
Strip out the MongoDB header added by Shodan
data = banner['data'].replace('MongoDB Server Information\n',

‘\n},\n")[2]

Load the database information
data = simplejson.loads(data + '}')

Keep track of how much data 1is publicly accessible
total_data += data['totalSize']

Keep track of which database names are most common
for db in data['databases']:
databases[db['name']] += 1
except Exception, e:
pass

print('Total: {}'.format(humanize_bytes(total_data)))

counter = 1
name, count in sorted(databases.iteritems(), key=operator.itemgetter(1l), rev\
erse=True)[:10]:

for

print('#{}\t{}: {}'.format(counter, name, count))
counter += 1

Here’s a sample output of the script:

Total: 1.8 PB

#1
#2
#3
w4
#5
#6
w# i
#8
#9
#10

local: 85845
admin: 67648
test: 24983

g: a1zl

config: 4329
proxy: 2045
research: 2007
seolib new: 2001
traditional: 1998
simplified: 1998

1)L split(\

Exercises: Shodan API

Exercise 1

Write a script to monitor a network using Shodan and send out notifications.

Exercise 2

Write a script to output the latest images into a directory.

Tip: Images are encoded using base64. Python can easily decode it into binary using:
image_string.decode(‘base64’)

Industrial Control Systems

In a nutshell, industrial control systems (ICS) are computers that control the world around
you. They’re responsible for managing the air conditioning in your office, the turbines at a
power plant, the lighting at the theatre or the robots at a factory.

Research conducted from 2012 through 2014 by Project SHINE (SHodan INtelligence
Extraction) indicates there are at least 2 million publicly accessible devices related to ICS
on the Internet. The first dataset containing 500,000 ICS devices was sent in 2012 to the
ICS-CERT. The ICS-CERT determined that roughly 7,200 out of the 500,000 were critical
infrastructure in the United States. And with the demand for increased connectivity in
everything that number is expected to rise. There have been efforts to secure these devices
by taking them offline or patching flaws, but it’s a challenging problem and there isn’t an
easy solution.

Common Abbreviations

Before getting into the protocols and how to find ICS devices, here are a few common
abbreviations that are useful to know:

BMS Building Management System

DCS Distributed Control System

HMI Human Machine Interface

ICS Industrial Control System

PLC Programmable Logic Controller

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition (a subset of ICS)
VNC Virtual Network Computing

Protocols
There are 2 different ways of identifying control systems on the Internet:

Non-ICS protocols used in an ICS environment

The majority of the ICS findings on Shodan are discovered by searching for web servers
or other popular protocols that aren’t directly linked to ICS but may be seen on an ICS

network. For example: a web server running on an HMI or a Windows computer running
unauthenticated remote desktop while connected to an ICS. These protocols provide you
with a visual view of the ICS but they usually have some form of authentication enabled.

Ferndartung

SSerEmN aktiv Abgas 1 Gasvordruck
- *d ronster schieBen - "C
Germischtemp Sprewzung
-
Ladedruck
lllll bar a
LD Sell <,
e
- bes ‘Elekirische q

_ v

Soll Leistung

_-_n':u_

' AMG Display

Motor Kontrolle -

. MOTOR Reduzwer 1
START | 65 KW
.Wﬂt :l Reduzer 2
Leistung 55 Kw

Betrieb: m g’]
| AUTO @ | = ‘
i UBERSICHT 95 KW

The above is an HMI for an engine exposed via an unauthenticated VNC connection
found on Shodan Images.

ICS protocols

These are the raw protocols that are used by the control systems. Every ICS protocol has
its own unique banner but there’s one thing they all have in common: they don’t require
any authentication. This means that if you have remote access to an industrial device you
automatically have the ability to arbitrarily read and write to it. However, the raw ICS
protocols tend to be proprietary and hard to develop with. This means that it’s easy to
check whether a device supports an ICS protocol using Shodan but hard to actually
interact with the control system.

The following banner describes a Siemens S7 PLC, note that it contains a lot of detailed
information about the device including its serial number and location:

Serial number of memory card: MMC 26553C8A

Copyright: Original Siemens Equipment

PLC name: SIMATIC 300

Unknown (129): Boot Loader &
Module: 6ES7 315-2EG10-0AB0 v.0.2
Basic Firmware: v.2.3.2

Module name: CPU 315-2 PN/DP

Serial number of module: S C-TNR942412005
Plant identification: EKw Termometria Full

Basic Hardware: 6ES/ 315-2EGlO0-0ABO0 v.0.2

Securing Internet-Connected ICS

The majority of ICS banners don’t contain information on where the device is located or
who owns the control system. This makes it exceedingly difficult to secure the device and
is one of the main reasons that they continue to stay online after years of research into
their online exposure.

If you discover a control system that looks critical, belongs to a government or otherwise
shouldn’t be online please notify the ICS-CERT

Use Cases

Assessing ICS for the USA

You’ve been tasked with generating a quick presentation on the exposure of industrial
control systems for the USA. To get started, lets first get a general idea of what’s out there
using the main Shodan website:

https://www.shodan.io/search?query=category%3Aics

This returns a list of all devices running ICS protocols on the Internet. However, there are
a lot of webservers and other protocols (SSH, FTP etc.) running on the same ports as
industrial control systems which we need to filter out:

https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-ident

Now we have a filtered list of devices running insecure ICS protocols. Since the focus of
the presentation will be on the USA, it’s time to narrow the results to only IPs in the USA:

https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-
ident+country%3Aus

To get a big picture view of the data and have some charts to work with we can generate a

free report. This provides us with a better understanding of which ICS protocols are seen
on the Internet in the US:

12,677.0

12,000.0

g,000.0

70000

6 000.0

5000.0
4 0000
3,000.0
2.000.0

1.000.0

-_-__-__
0.0 T sssssss Ssssssss. 0 |

Tridium Fox Modbus OMRON FINS General Electric SRTP Red Lion Tridium Fox + SSL siemens 57
BACnet EtherNetiP ProCon0S Mitsubishi MELSEC-QO PCWorx Codes HART-IP IEC-104

Tridium’s Fox protocol, used by their Niagara framework, is the most popular ICS
protocol in the US followed by BACnet and Modbus. The data shows that the majority of
exposed devices are BMS used in offices, factories, stadiums, auditoriums and various
facilities.

The above chart was saved as an image using Nimbus Screen Capture on Firefox, but you
can also use the Awesome Screenshot Minus plug-in for Chrome.

The report also highlights a common issue with ICS on the Internet: the majority of them
are on mobile networks. This makes it especially difficult to track down and secure these
devices.

Venzon Wireless

Comcast Cable

C-omcast Business Communications
ATAT Internet Services

CenturyLink

America Online

AT&T U-verse

Time Wamer Cable

AT&T Wireless

Cox Communications

-
(=]

200.0 000« 2,000.0 2,500.0 3,000.0 3,500.0 4.000.0

At this point, the data shows us the following:

1. There are at least 65,000 ICS on the Internet exposing their raw, unauthenticated
interfaces
2. Nearly half of them (~31,000) are in the US alone

3. Buildings are the most commonly seen type of ICS
4. Mobile networks host the largest amount

Further Reading

1. Distinguishing Internet-Facing Devices using PL.C Programming Information
2. NIST Special Publication - Guide to Industrial Control Systems Security

3. Quantitatively Assessing and Visualizing Industrial System Attack Surfaces

Identifying Honeypots

Honeypots have become an increasingly popular and useful tool in understanding
attackers. I’ve seen many misconfigured honeypots while scanning the Internet, here are a
few tips to identify them or mistakes to avoid when setting them up.

What is a honeypot?

A honeypot is a device that pretends to be something it actually isn’t for the purpose of
logging and monitoring network activity. In the case of control systems, an ICS honeypot
is a regular computer that pretends to be a control system such as a factory or power plant.
They are used to collect information on attackers, including which networks the attackers
are targeting, what tools they’re using and many other useful insights that help defenders
harden their network.

In recent years, honeypots have been used to measure the number of attacks that have
been attempted against industrial control systems connected to the Internet. However, it is
critically important to understand proper honeypot deployment before trying to gather the
data. Many people misconfigure their honeypots and I will outline how those mistakes
make it trivial to determine whether a device is a real control system or a honeypot.

The most popular and de-facto honeypot used to simulate industrial control systems is
Conpot. The software is well-written and extremely powerful when properly configured.
Most of the examples and discussion will be using Conpot but the principles apply to all
honeypot software.

Why Detect Them?

The data that honeypots generate is only as good as their deployment. If we want to make
informed decisions about who is attacking control systems we have to ensure the data is
being gathered from realistic honeypots. Sophisticated attackers won’t be fooled by
honeypots that are poorly configured. It’s important to raise awareness for common
pitfalls when deploying honeypots to improve the quality of data being collected.

Default Configurations

The most common mistake that people make when deploying honeypots is using the
default configuration. All default configurations return the same banner, including

identical serial numbers, PLC names and many other fields that you would expect to vary
from IP to IP.

[first realized how common this problem is soon after doing the first Internet scan for
Siemens S7:

S7 Serial Number Uniqueness

® Repeating ™ Unique

30% of the serial numbers in the results were present in more than one banner. It doesn’t
mean that all of the duplicate serial numbers are honeypots but it’s a good starting point
for investigation.

In the case of S7, the most popular serial number seen on the Internet is 88111222 which
is the default serial number for Conpot.

Showing results 1-100f 110

91.229.57.200

FH JOANNEUM Gesellschaft mbH Location designation of a module:

Copyright: Original Siemens Equipment

= Austris, Allerheiligen Bei Wilden
Module type: IM151-8 PN/DP CPU

Details

PLC name: Technodrome

Module: v.9.9

Plant identification: Mouser Factory

OEM ID of a module:

Module name: Siemens, SIMATIC, S7-20@

Serial number of module: 88111222
24.164.128.60
ec2-54-164-1238-00.compute-1.amazonaws.com Location designation of a module:
AMAZGH | E.00-27 GAAT Copyright: Original Siemens Equipment
E_ _L;ni_te,; .'am't; Asl';b-l.l;'n_ . Module type: IM151-8 PN/DP CPU
Details PLC name: Technodrome

Module: v.9.0

Plant identification: Mouser Factory
OEM ID of a module:

Module name: Siemens, SIMATIC, S7-200
Serial number of module: 88111222

Searching by the serial number makes it trivial to locate instances of Conpot on the
Internet. And make sure to also change the other properties of the banner, not just the
serial number:

52.24.188.77

E.l. du Pont de Nemours and Co. Location designation of a module:

| | Copyright: Original Siemens Equipment
Module type: CPU 315-2 PN/DP

PLC name: Technodrose

Module: v.0.0

Plant identification: Mouser Factory

OEM ID of a module:

Module name: Saiemens, SIMATIC, S57-200
Sérial number of module: S C-C4VDE6352012

8 United States, Wilmington
Details

The above user changed the serial number to a unique value but failed to change the PLC
name (Technodrome) and the plant identification (Mouser Factory). Every honeypot
instance must have unique values in order to evade honeypot detection techniques.

History Matters

The honeypot has to be deployed properly from day 1 otherwise the banner history for the
device will reveal it as a honeypot. For example:

Location designation of a module:
Copyright: Original Siemens Equipment
Module type: IM151-8 PN/DP CPU

PLC name: PG[random.randint(0,1) f
Module: v.9.0

Plant i1dentification: Power Generation One
0EM ID of a module:

Module name: Siemens, SIMATIC, S7-200
Serial number of module: 8675309

The above is a banner pretending to be a Siemens S7 PLC. However, there was an error in
the template generating the banner and instead of showing a valid PLC name it shows the

template’s random.randint(0,1) method. Shodan has indexed this banner and even if the

bug is fixed in the future a user could look up the history for this IP and see that it used to

have an invalid S7 banner.

A sample Shodan API request for the history of an IP:

host = api.host('xxx.xxx.xxx.xxx', history=True)

Emulate Devices, Not Services

Keep it simple, don’t try to emulate too many services at once. A honeypot should emulate
a device and most real devices don’t run MongoDB, DNP3, MySQL, Siemens S7,
Kamstrup, ModBus, Automated Tank Gauge, Telnet and SSH on the same IP.

am Ports

Think about how the device is configured in the real-world and then emulate it, don’t run
every possible service simply because it’s possible.

In code, you could use the number of ports as a metric:

Get information about the host
host = api.host("XXX.XXX.XXX.XXX")

Check the number of open ports
if len(host['ports']) > 10:

print('{} looks suspicious'.format(host|['ip_str']))
else:

print('{} has few ports open'.format(host|['ip_str']))

Location, Location, Location

[t isn’t just the software that needs to be properly configured, a honeypot also has to be
hosted on a network that could reasonably have a control system. Putting a honeypot that
simulates a Siemens PLC in the Amazon cloud doesn’t make any sense. Here are a few of
the popular cloud hosting providers that should be avoided when deploying an ICS
honeypot:

Amazon EC2
Rackspace
Digital Ocean
Vultr

Microsoft Azure
Google Cloud

b LR s B IS

For realistic deployment, look at the most popular ISPs in Shodan for publicly accessible
ICS. In general, it is better to put the honeypot in the IP space of a residential ISP. The
following organizations are the common locations in the USA:

Venzon Wireless
Comcast Cable
Comcast Business Communications

ATAT Intermnet Services

CenturyLink

America Online

ATA&T U-verse

Time Wamer Cable

AT&T Wireless

Cox Communicabons

0.0 2500.0 1,000.0 1.500.0 25000 3.,000.0 3,500.0 4.000.0 4.380.0

Honeyscore

I developed a tool called Honeyscore that uses all of the aforementioned methods as well
as machine learning to calculate a honeyscore and determine whether an IP is a honeypot
or not.

Honeypot Or Not?

Crmiar s 1F o chack whsltar 1 = a Rommned o B real coniimed By

Honeypot found!

Frequently Asked Questions
P O3S E WD

VWihal It

Simply enter the IP address of a device and the tool will perform a variety of checks to see
whether it is a honeypot.

Further Reading

1. Wikipedia article on honeypots
2. Breaking Honeypots for Fun and Profit (Video)

Appendix A: Banner Specification

For the latest list of fields that the banner contains please visit the online documentation.

A banner may contain the following properties/ fields:

General Properties

Name Description Example
asn Autonomous system number AS4837
data Main banner for the service HTTP/1.1 200...
ip IP address as an integer 493427495
ip_str IP address as a string 199.30.15.20
ipv6 IPv6 address as a string 2001:4860:4860::8888
port Port number for the service 80
threstanp Date and time the information was 2014-01-
collected 15T05:49:56.283713

[“shodan.io”,
“www.shodan.io”]

domains List of domains for the IP |“shodan.io”]

link Network link type Ethernet or modem
location Geographic location of the device see below
Supplemental data not contained

hostnames List of hostnames for the IP

opts . ;
in main banner
o1 %rganlzatlon that is assigned the Google Inc.
fii ISP that is responsible for the IP Vadionn Windloe
space
0S Operating system Linux
uptime Uptime of the IP in minutes 50
Type of transport protocol used to
transport collect banner; either “udp” or tcp
“tcp”

HTTP(S) Properties

Name Description
html HTML content of the website
title Title of the website

Location Properties

The following properties are sub-properties of the lo
of the banner record.

cation property that is at the top-level

Name Description

area_code Area code of the device’s location
city Name of the city

country_code 2-letter country code
country_code3 3-letter country code
country_name Full name of the country
dma_code Designated market area code (US-only)
latitude Latitude

longitude Longitude

postal_code Postal code

region_code Region code

SSL Properties

If the service is wrapped in SSL then Shodan performs additional testing and makes the

results available in the following properties:

Name Description

ssl.cert Parsed SSL certificate
ssl.cipher Preferred cipher for the SSL

[ist of SSL certificates from
the root certificate

ssl.dhparams Diffie-Hellman parameters

ssl.chain

connection
the user certificate up to

Supported SSL versions; if the value starts with a “-“

ssl.versions then the service does not sup

port that version (ex. “-

SSLv2” means the service doesn’t support SSLv2)

Special Properties

~shodan

The _shodan property contains information about how the data was gathered by Shodan.
It is different than al the other properties because it doesn’t provide information about the
device. Instead, it will tell you which banner grabber Shodan was using to talk to the IP.

This can be important to understand for ports where
on. For example, port 80 is most well-known for we

multiple services might be operating
h servers but it’s also used by various

malware to circumvent firewall rules. The _shodan

roperty would let you know whether

the http module was used to collect the data or whether a malware module was used.

Example

1
"timestamp": '"2014-01-16T08:37:40.081917",

"hostnames": [
"99-46-189-78.1lightspeed. tukrga.sbcglobal.net"”

1,

"org": "AT&T U-verse",
"guid": "1664007502:75a821e2-7e89-11e3-8080-808080808080",
"data": "NTPANXXX.XXX.XXX.XXX:7546\n68.94.,157.2:123\n68.94.156.17:123",
"parE": 123,
"isp": "AT&T U-verse",
aspl: PASTOIBY,
= Location”; i1
"country_code3": "USA",
“cate: "Arlanta’™,
"postal_code": "30328",
"longitude": -84.3972,

"CDUHtFY_CDdE" : "USII,
"latitude": 33.93350000000001,
"country_name": "United States”,

"area_code": 404,

"dma_code": 524,

‘region_coae”™: ‘hull

Iy

"ip": 1664007502,

"domains": [
"sbcglobal.net”

1,

“1p: sEr™: "99.46.189.78";

"os": null;

"DptSH: {

"raw" : "NAX97NAXOONAXO3F*NAXOONAXO3NAXOOHNAXOONNXOON\XOO N\ XO00\\X00\\X00\
ANXOONNXOONAXOONAXOONNXOONAXOONAXOONAXOONAXOONAXO1G\\XO6 \\xa7 \\x8ec . \\XbdN\\x00\\
AXOONAXOONAXOINAXLIAZNNXO7ANNXO2NAXO00 N\ XOON\XOONAXOO0NAXOON\XOON\XO0 N\ XOO\\XO00\\ X000\
AAXOONAXOONAXOONNXOONNXOONNXOONAXOONAXOONNXOONNXOONAXOONAXOON\AXO0 N\ XOON\XO0\\ X000\
ANAXOONNXOONAXOONNXOONNXOONNXOONAXOONNXOONNXOONNXOONNXOONNXOONNXOONNXOON\XO0N\\XO0N
\NAXOOgN\AXOONAXOONAXOOLNAXOONAXOONAXOONAXOONAXOONAXOONNAXOOXDANAXIANAXO2C . N\ XDANNNN
XOONAXOONAXOONAXOINAXOO{\\XO4\\XO4\\XOO N\ XOON\XOO\AXOO0\NAXOON\XOO0\\XOO\N\XOO\\XO0\\
AXOONAXOONAXOONAXOONAXOONAXOONAXOONNXOON\XOONAXOONNXOONNXOONNXOO NN XOON\XOON\XO0N\N\
AXOONAXOONAXOONAXOONAXOONAXOONAXOONNXOON\XOONAXOONNXOONNXOONAXOO NN XOON\XOON\XO0\N
A XO0\\XO0g\\XOO\AXO0N\XO00\\XOON\XOON\NAXOONAXOO\\XOO0\\XOO0N\N\XO00YDAN\X9c\\x11c. \\xb\
ANNAXOONAXOONAXOONAXOINAXOO{ \\ X004\ A X044\ \XOO N\ XOO0NAXOONAXOO N\ XOO N X000\ AXOO0\\XO0\\N\
XOONAXOONAXOONNXOONNXOONAXOONAXOONAXOONAXOONNXOONAXOONAXOONAXOONNXOONAXOONNAXOO NN\
XOONAXO0NAXOON\XOO0NAXOON\XOONAXOONNXO00 N AXOO0NAXOONAXO0NAXO0 N\ X0\ \ X000\ \XO00\\X00",

rlntpll . {

"more": false

1

Appendix B: List of Search Filters

General Filters

Name Description Type
After Only show results after the given date string
(dd/mm/yyyy)
asn Autonomous system number string
b Only show results before the given date :
efore string
(dd/mm/yyyy)
category Available categories: ics, malware string
city Name of the city string
country 2-letter country code string
Accepts between 2 and 4 parameters. If 2
parameters: latitude,longitude. If 3
parameters: latitude,longitude,range. If 4 :
50 parameters: top left latitude, top left String
longitude, bottom right latitude, bottom right
longitude.
has_ipv6 True/ False boolean
has_screenshot True/ False boolean
hostname Full hostname for the device string
html HTML of web banners string
ip Alias for net filter string
isp ISP managing the netblock string
hot Network range in CIDR notation (ex. string
199.4.1.0/24)
org Organization assigned the netblock string
0S Operating system string
port Port number for the service integer
postal Postal code (US-only) string
st Name of the software/ product providing the ety
banner
region Name of the region/ state string
state Alias for region string
title Title for the web banner’s website string
version Version for the product string
vuln CVE ID for a vulnerability string

NTP Filters

Name Description
ntp.ip [P addresses returned by monlist string
ntp.ip_count Number of IPs returned by initial monlist integer
- True/ False; whether there are more.IP T -
addresses to be gathered from monlist
ntp.port Port used by IP addresses in monlist integer
SSL Filters
Name Description Type
has_ssl True/ False boolean
ssl Search all SSL data string
Application layer protocols such as :
ssl.alpn HE}"}P P (“hZ”S)I P string
ssl.chain_count Number of certificates in the chain integer
<<l version Possible values: SSLv2, SSLv3, string
TLSv]l, TLSvl.1, TLSv1.2
ssl.cert.alg Certificate algorithm string
ssl.cert.expired True/ False boolean
ssl.cert.extension =~ Names of extensions in the certificate string
. Serial number as an integer or integer/
ssl.cert.serial : . :
hexadecimal string string
ssl.cert.pubkey.bits Number of bits in the public key integer
ssl.cert.pubkey.type Public key type string
ssl.cipher.version = SSL version of the preferred cipher string
ssl.cipher.bits Number of bits in the preferred cipher integer
ssl.cipher.name Name of the preferred cipher string
Telnet Filters
Name Description Type
telnet.option Search all the options string
T Thl? server requests the client do support these string
options
telnet dont Thg server requests the client to not support these string
options
telnet.will ~ The server supports these options string
telnet.wont The server doesn’t support these options string

Appendix C: Search Facets

General Facets

Name

Description

asn
City

country
domain
has_screenshot

1Sp
link
org
0S
port
postal

region
State

uptime
Vversion

vuln

NTP Facets

Name

product

Autonomous system number

Full name of the city

Full name of the country

Domain(s) for the device

Has screenshot available

ISP managing the netblock

Type of network connection
Organization owning the netblock
Operating system

Port number for the service

Postal code

Name of the software/ product for the banner
Name of the region/ state

Alias for region

Time in seconds that the host has been up
Version of the product

CVE ID for vulnerability

Description

ntp.ip

[P addresses returned by monlist

ntp.ip_count Number of IPs returned by initial monlist

ntp.more

ntp.port

SSH Facets

Name

True/ False; whether there are more IP addresses to be
gathered from monlist

Port used by IP addresses in monlist

Description

ssh.cipher
ssh.fingerprint
ssh.mac
ssh.type

SSL Facets

Name of the cipher

Fingerprint for the device

Name of MAC algorithm used (ex: hmac-shal)
Type of authentication key (ex: ssh-rsa)

Name Description

ssl.version SSL version supported

ssl.alpn Application layer protocols
ssl.chain_count Number of certificates in the chain
ssl.cert.alg Certificate algorithm

ssl.cert.expired True/ False; certificate expired or not
ssl.cert.serial Certificate serial number as integer
ssl.cert.extension Name of certificate extensions
ssl.cert.pubkey.bits Number of bits in the public key
ssl.cert.pubkey Name of the public key type
ssl.cipher.bits Number of bits in the preferred cipher
ssl.cipher.name Name of the preferred cipher
ssl.cipher.version SSL version of the preferred cipher

Telnet Facets

Name Description

telnet.option Show all options

telnet.do The server requests the client do support these options
The server requests the client to not support these

telnet.dont .
options

telnet.will ~ The server supports these options
telnet.wont The server doesn’t support these options

Appendix D: List of Ports

Port Service(s)

7 Echo

11 Systat

13 Daytime

15 Netstat

17 Quote of the day
19 Character generator
21 FTP

22 SSH

23 Telnet

25 SMTP

26 SSH

57 rdate

49 TACACS+

53 DNS

67 DHCP

69 THTP, BitTorrent
79 Finger

80 HTTP, malware
81 HTTP, malware
82 HTTP, malware
83 HTTP

84 HTTP

88 Kerberos

102 Siemens S7

110 POP3

111 Portmapper

119 NNTP

123 NTP

129 Password generator protocol
137 NetBIOS

143 IMAP

161 SNMP

175 IBM Network Job Entry
179 BGP

195 TA14-353a

311 OS X Server Manager

3389

443
444
445
465
500
502
503
515
520
523
554
587
623
626
666
771
789
873
902
992
993
995
1010
1023
1025
1099
1177
1200
1234
1434
1604
1723
1833
1900
1911
1962
1991
2000
2082
2083
2086

LDAP
HTTPS

TA14-353a, Dell SonicWALL

SMB

SMTPS

IKE (VPN)

Modbus

Modbus

L.ine Printer Daemon
RIP

IBM DB2

RTSP

SMTP mail submission
[PMI

OS X serialnumbered
Telnet

Realport

Redlion Crimson3
rSync

VMWare authentication
Telnet (secure)
IMAP with SSL
POP3 with SSL
malware

Telnet

Kamstrup

Java RMI

malware

Codesys

udpxy

MS-SQL monitor
Citrix, malware
PPTP

MQTT

UPnP

Niagara Fox
PCworx

malware

iKettle, MikroTik bandwidth test

cPanel
cPanel

WHM

2087
2123

2152
2181
2222
2323
2532
2370
2376
2404
2455
24380
2628
3000
3306
33386
33388
3389
3460
3541
3542
36389
37380
3787
4000
4022
4040
4063
4064
4369
4443
4444
4500
4567
4911
4949
5006
5007
5008
5009
5060

WHM
GTPvl

GTPvl

Apache Zookeeper

SSH, PLC5, EtherNet/IP
Telnet

Sierra wireless (Telnet)
Docker

Docker

[EC-104

CoDeSys

OrientDB

Dictionary

ntop

MySQL

GTPvl

RDP

RDP

malware

PBX GUI

PBX GUI

DACP

Metasploit

Ventrilo

malware

udpxy

Deprecated Chetf web interface
ZeroC Glacier2

ZeroC Glacier2 with SSL
EPMD

Symantec Data Center Security
malware

IKE NAT-T (VPN)
Modem web interface
Niagara Fox with SSL
Munin

MELSEC-Q
MELSEC-Q
NetMobility

Apple Airport Administration
SIP

5094
52272

5269
2393

D307
5432
2077
5632
5672
5900
5901
0934
6000
6379
6666
6667
63381
6969
7218
7474
7548
LL
7779
38010
3060
3069
38087
3090
8099
8112
8139
38140
3181
8333
38334
38443
8554
3380
38388
38889
9001
9002

HART-IP
XMPP

XMPP Server-to-Server
mDNS

Microsoft-HTTPAPI/2.0
PostgreSQL

Flux LED

PCAnywhere
RabbitMQ

VNC

VNC

CouchDB

X11

Redis

Voldemort database, malware
IRC

BitTorrent DHT

THFTP, BitTorrent

Sierra wireless (Telnet)
Neo4j database

CWMP (HTTPS)
Oracle

Dell Service Tag API
Intelbras DVR

Roku web interface
OpenkRP

Riak

Insteon HUB

Yahoo SmartTV

Deluge (HTTP)

Puppet agent

Puppet master
GlassFish Server (HTTPS)
Bitcoin

Bitcoin node dashboard (HTTP)

HTTPS

RTSP

Websphere SOAP

HTTP, Andromouse
SmartThings Remote Access
Tor OR

Tor OR

9051
9100

9151
9160
9191

9443

9595

9600

10001
10243
11211
17185
12345
135/9
14147
16010
18245
20000
20547
21025
21379
23023
23424
25105
250605
27015
27017
28017
30718
32400
37777
44818
47808
49152
49153
50070
51106
54138
sislots e
55554
62078
64738

Tor Control
Printer Job Language

Tor Control
Apache Cassandra
Sierra wireless (HT'TP)

Sierra wireless (HTTPS)
LANDesk Management Agent
OMRON

Automated Tank Gauge
Microsoft-HTTPAPI/2.0
Memcache

VxWorks WDBRPC

Sierra wireless (Telnet)

Media player classic web interface
Filezilla FTP

Apache Hbase

General Electric SRTP

DNP3

ProconOS

Starbound

Matrikon OPC

Telnet

Serviio

Insteon Hub

Minecraft

Steam AZ2S server query, Steam RCon

MongoDB
MongoDB (HTTP)
Lantronix Setup
Plex

Dahuva DVR
EtherNet/IP
Bacnet

Supermicro (HTTP)
WeMo Link

HDFS Namenode
Deluge (HTTP)
Toshiba PoS
Metasploit
Metasploit

Apple iDevice
Mumble

Appendix E: Sample SSL Banner

"hostnames": [],

Htitletl: "“;

"ip": 2928565374,

"isp": "iWeb Technologies",

“Lransport®™: “tcp,

"data": "HTTP/1.1 200 OK\r\nExpires: Sat, 26 Mar 2016 11:56:36 GMT\r\nExpire\
s: Fri, 28 May 1999 00:00:00 GMT\r\nCache-Control: max-age=2592000\r\nCache-Cont\
rol: no-store, no-cache, must-revalidate\r\nCache-Control: post-check=0, pre-che\
ck=0\r\nLast-Modified: Thu, 25 Feb 2016 11:56:36 GMT\r\nPragma: no-cache\r\nP3P:\
CP=\"NON COR CURa ADMa OUR NOR UNI COM NAV STA\"\r\nContent-type: text/html\r\n\
Transfer-Encoding: chunked\r\nDate: Thu, 25 Feb 2016 11:56:36 GMT\r\nServer: sw-\
cp-server\ri\n\r\n",

"asn": "AS32613",

"port": 8443,

"gg]": {

"chain": ["----- BEGIN CERTIFICATE----- \NMIIDszCCApsSCBFBTb4swDQYJKoZIhvcN\
AQEFBQAwWQgZOxCzAJBgNVBAYTALVTMREWANDWYDVQQIEwhWaXJnaWs5pYTEQMA4GA1UEBXMHSGVyYbmRvbJ\
ESMBAGALUEChMJUGFY\nYWxsZWxzMRgwFgYDVQQLEW9QYXJhbGx1bHMgUGFuUZWwxGDAWBgNVBAMTD1Bh\
cmFs\nbGVscyBQYW51bDEhMB8GCSgGSIb3DQEJARYSaWsmbOBwWYXJhbGx1bHMUY29tMB4X\NDTEYMDk X\
NDE3NTUyM10XDTEzZMDkXNDE3NTUyM1owgZOxCzAJBgNVBAYTALVTMREW\NDWYDVQQIEwWhWaXJnaWspYT\
EQMA4GA1UEBXMHSGVybmRvb JESMBAGALUEChMJUGFY\nYWXxsZWxzMRgwFgYDVQQLEW9QYXJhbGx1bHMg\
UGFuZWwxGDAWBgNVBAMTD1BhcmFs\nbGVscyBQYW51bDEhRMB8GCSqGSIb3DQEJARYSaWsmbhOBwYXJIhbG\
x1bHMuY29tMIIB\nIjANBgkqhkiGOwWOBAQEFAAOCAQS8AMIIBCgKCAQEAXCIOVY/qajKtFFNHXGOFPHTxm\
\NSONsTTfWBTBfyXnK3h8u041VxvZDh3XkpA+ptg2fWOUITOTTYugw+tqlDmg8YTsHy\njcpMFBtXV2cV\
dhKXaS3YY1M7dP3gMmkGmH+ZvCgCYCc7LOMIIXYJy6Zeuh67YXEMVAngiU8mZpvc70Cg5WeWluBCXtUALN
jDLsVWNhsV3YuxlweEvVkRpAk3EHehKbvgMNnEZS\nQ30QySeOGAQC7bWzKrwsJAOUkK/+Js18+3QKb/LmD\
a9CcRjtFCTo6hYfPbfHj8RxQh\n4Xmnn/CtZ48wRQTqKXS06+Zk30uU7/jX1Gt/jXxN6n77673e6uCsggT\
wut/EtNwID\NAQABMAOGCSqGSIb3DQEBBQUAA4IBAQBL/yTy76Ykwr7DBOPAXCc766Nn730sZizjAt\n1k\
mMX7LXgN3X/wWFxD531r+sd0qbPgJl3edrE/ZGO9dN16LhUBbUK+9s6Z29Q1CcETSX0\n4uQpFSywbhGGmXINE\
ZmyT4Ss0L1/hNgy68f49L01h6rn/p7QgIKd31g7189ZfFkFb\nRdD49s11/Cc5Nm4XapUvvmnS91M1Pk\
/00IgilLulrYkuc8sIoZdPbep52H3Ga7TjG\nkm07nUIii@goB7TQ63mU67+NWHAMQQBCtCDCN49kJyen\
1WFjD6Je2U4q0IFQrxHw\nMy+tquo/n/sa+NV8Q0j1gMVcFsLhYm7Z5Z0NgOQFXSAL+EyYj/AwZ\n- - - -\
-END CERTIFICATE----- 1 1] 8

“CIpher-s: 4

"version": "TLSv1/SSLv3",

FhipaM: D56

"name": "DHE-RSA-AES256-GCM-SHA384"

I

Halpnl‘l: [];

"dhparams": {

"prime": "b10b8T96a080e0ldde92de5eae5d54ec52c99fbcfbO6al3c69a6a9dcasb2\
d23b616073e28675a23d189838efle2ee652c013ech4aea’906112324975c3cd49b83btacchdd7d90\
c4bd7098488e9c219a73724effd6fae5644738faa3ladffs55bcccPalslarfs5f0dec8b4bd45bT37dT36\
5cla65e68cfda76d4da708df1ifb2bc2e4a4371",

"public_key": "2e30a6e455730b2f24bdaf5986b9f0876068d4aa7ad4el5¢c9alb9c\
a05a420e8fd3b496f7781a9423d3475f0bedee83f0391aaa95a738c8f0e250a8869a86d41bdb0194\
66dba5c641ed4b2b4b82db4cc2d4ea8d9804ec00514F30adbb6cel70b81c3elcedb3d17647c8e5b8T6\
65bb71588100bcc9a447d34d728c3709fd8a5b7753b",

"bits": 1024,

"generator": "a4dlcbd5c3fd34126765a442efb99905f8104dd258ac507fd6406c\
ff14266d31266Ffeale5c41564b777e690T55041213160217b4b01b886a5e9154719e2749f4d7bd7\
d3b9a92ee1909d0d2263f80a76a6a24c087a091f531dbf0a0l169b6az28ad662ad4dl8e73ata32d779d\
5918d08bc8858f4dcef97c2a24855e6eeb22b3b2e5",

"fingerprint”:. "RFC5114/1024-bit MODP Group with 160-bit Prime Order\

Subgroup"

I

'versions”. |["TLSv1l", "-SSLv2", "SSLv3", "TLSv1i.1", "TLSv1.2"]

3

"html": "\n\t\t<html><head>\n\t\t<meta charset=\"utf-8\">\n\t\t<meta http-eqg\
uiv=\"X-UA-Compatible\" content=\"IE=edge,chrome=1\">\n\t\t<title></title>\n\t\t\
<script language=\"javascript\" type=\"text/javascript\" src=\"/javascript/commo\
n.js?plesk_version=psa-11.0.9-110120608.16\"/></script>\n\t\t<script language=\"\
javascript\" type=\"text/javascript\" src=\"/javascript/prototype.js?plesk_versi\
on=psa-11.0.9-110120608.16\"></script>\n\t\t<script>\n\t\t\tvar opt_no_frames = \
false;\n\t\t\tvar opt_integrated_mode = false;\n\t\t</script>\n\t\t\n\t\t</head>\

<body onLoad=\";top.location="'/login.php3?window_id=&requested_url=https%3A%\
2F%2F174.142.92.126%3A8443%2F ' ; \"></body><noscript>You will be redirected to the\
new address in 15 seconds.. If you are not automatically taken to the new loca\
tion, please enable javascript or click the hyperlink <a href=\"/login.php3?wind\
ow_id=&requested_url=https%3A%2F%2F174.142.92.126%3A8443%2F\" target=\"top\"\
>/1ogin.php3?window_id=& requested_url=https%3A%2F%2F174.142.92.126%3A8443%2F\
.</noscript></html><!--

IE error page size limitation

T

"location": {
Yeaty": null,
"region_code": "QC",
"area_code": null,
"longitude": -73.5833,
"country_code3": "CAN",
“latitude®: 45.5;
"postal code": "H3G",
"dma_code": null,
"country_code": "CA",
"country_name": "Canada"
}
"timestamp": "2016-02-25T11:56:52.548187",
"domains": [],
"org": "iweb Technologies",
"os": null,
" _shodan": {
"options": {3},
"module": "https",
"crawler": "122dd688b363c3b45b0e7582622dale725444808"
1 ¥
IletSH: {:
"heartbleed": "2016/02/25 03:56:45 ([]Juint8) {\n 0QOEEOEE 02 0O 74 63 6\
5 6e 73 75 73 2e 73 68 6T 64 61 6e |..tcensus.shodan|\n 000EEER10 2e 69 6f 53 \
45 43 55 52 49 54 59 20 53 55 52 56 |.10SECURITY SURV|\n 00000020 45 59 fe 7a\
a2 0d fa ed 93 42 ed 18 b0 15 7d 6e |EY.z....B...}n|\n 00000030 29 08 f6 f\

8 ce 00 bl 94 b5 4b 47 ac dd 18 aa b9 |)........ KG....|\n 00000040 db 1c 01 \
45 95 10 e@ a2 43 fe 8e ac 88 2f e8 75 |...E...C.../.u|\n 00000050 8b 19 5f\

8c e® 8a 80 61 56 3c 68 Of el 1f 73 9e |.._...aV<h..s.|\n 00000060 61 4f d\
a db 90 ce 84 e3 79 5f 9d 6¢c a0 90 ff fa |a0.....y_.l..|\n 00000070 d8 16 \
e8 76 07 b2 e5 5e 8e 3e a4 45 61 2f 6a 2d |...v.A.>.Ea/j-|\n 00000080 5d 11\
74 94 03 3c bd |1.t..<]|\n}\n\N2G16/02/25 03:56:45\

174.142.92.126:8443 - VULNERABLE\N",
"vulns": ["CVE-2014-0160"]

Y
“ip: str'™s "174:142.92. 106"

Exercise Solutions

Website

Exercise 1

title:4sics

Exercise 2

has_screenshot:1l country:se city.nora

https://www.shodan.io/host/81.233.255.165

Exercise 3
vuln:CVE-2014-0160 country:se ssl.version:sslv2

vuln:CVE-2014-0160 org:"your organization"

Exercise 4

category:1ics city:"your city name"

Exercise 5

category:malware country:se

Command-Line Interface

Exercise 1

shodan download --limit -1 heartbleed-results country:se,no vuln:CVE-2014-0160
shodan parse --filters location.country_code:SE -0 heartbleed-sweden heartbleed-\
results.json.gz

Note: The —filters argument does case-sensitive searching on properties that are
strings, hence the Swedish country code has to be upper-case.

Exercise 2

mkdir data
shodan stream --1limit 1000 --datadir data/
shodan convert data/* kml

Upload the KML file to https://www.google.com/maps/d/

Exercise 3
#!/bin/bash
shodan download --limit -1 malware.json.gz category:malware

for ip in "shodan parse --fields 1p_str malware.json.gz
do

iptables -A OUTPUT -d $ip -j DROP
done

Shodan API

Replace YOUR_API_KEY with the API key for your account as seen on your Shodan
Account website.

Exercise 1
#!1/usr/bin/env python
Initialize Shodan
import shodan

api = shodan.Shodan("YOUR_API_KEY")

Create a new alert
alert = api.create_alert('My first alert', '198.20.69.0/24"')

try.
Subscribe to data for the created alert
for banner in api.stream.alert(alert['id']):
print banner
except:

Cleanup 1f any error occurs
api.delete_alert(alert['id'])

Tip: Use the Shodan command-line interface’s alert command to list and remove alerts.
For example:

shodan alert list
shodan alert clear

Exercise 2

mkdir i1images

Run the above command to generate a directory to store the images in. Then save the
following code in a file such as image-stream. py:

#!1/usr/bin/env python
import shodan

output_folder = 'images/'
api = shodan.Shodan("YOUR_API_KEY")

for banner in apl.stream.banners():
if 'opts' in banner and 'screenshot' in banner['opts']:
All the images are JPGs for now
TODO: Use the mimetype to determine file extension
TODO: Support IPv6 results

H H

Create the file name using its IP address
filename = '{}/{}.jpg'.format(output_folder, banner['ip_str'])

Create the file 1itself
output = open(filename, 'w')

The images are encoded using base64
output.write(banner['opts']['screenshot'].decode('base64'))

